본문바로가기

What we do

We aim to provide our clients with intelligence,
future-directed information and analysis.

Report purchase request

  • Sales team
  • 070-4006-0265 / 070-4006-1507 / 070-4006-0355

  • sales@sneresearch.com

Purchase inquiry
Battery, Battery Materials

<2025> Latest Status and Outlook of All-Solid-State Battery Electrolytes and Manufacturing Technologies

(In-Depth Analysis of Key Developers and Manufacturing Technologies of Solid Electrolytes and ASSBs)

 

 

 

The performance of lithium-ion batteries, which are currently the most widely used, has continuously improved due to relentless technological advancements driven by the surging demand for new electronic devices and electric vehicles. Notably, energy density has dramatically increased to exceed 350Wh/kg. However, higher energy density also entails a greater risk of fire and explosion. Lithium-ion batteries can experience electrical failures, internal overheating, and heat release due to mechanical damage, over-discharge, or overcharge, potentially leading to thermal runaway and explosive reactions.

 

 

To mitigate these risks, solid-state batteries, which incorporate solid electrolytes, have emerged as a next-generation battery technology alternative. The key advantages of solid-state batteries include excellent safety, high energy density, high power output, a wide operating temperature range, and fast charging. As a result, they offer freedom from explosion risks and can operate safely and stably even in extreme temperatures, from sub-zero conditions to high temperatures of 60–100°C. This enhances their applicability across a broader range of fields.

 

 

 

According to predictions by SNE Research, the global solid-state battery market size is expected to grow to 122GWh by 2030, achieving a penetration rate of 1.6%. By 2035, it is forecasted to reach 493GWh, accounting for 6.1% of the total battery market. Governments of countries including South Korea, the United States, China, Japan, and various European nations are responding with national-level support policies to secure and lead next-generation battery technologies. In South Korea, for example, the government announced plans to invest 117.2 billion KRW by 2028 through a program supporting three types of next-generation batteries, including solid-state batteries, starting in the second half of 2024.

 

 

 

To prepare for the rapid shift in the paradigm of secondary batteries towards solid-state batteries, proactive development of key materials and mass production technologies related to solid-state batteries is essential. While solid-state batteries have the potential to overcome the limitations of existing batteries, several challenges remain, including ion conductivity, interface stability, mass production technologies, and price competitiveness.

 

 

 

Meanwhile, most companies predict that the commercialization of solid-state batteries will occur around 2030. This timeline is influenced not only by the high cost of solid electrolytes and the underdeveloped materials for commercialization, but also by the lack of established manufacturing (production) technologies.

 

 

 

Therefore, this report aims to predict the current level of manufacturing technologies based on patents and various information, while addressing the issues related to materials and process technologies required to manufacture solid-state batteries. Additionally, it seeks to propose appropriate solutions to these challenges.

 

 

Specifically, through patent and paper analysis on solid-state batteries, the report identifies the strengths of different countries in terms of application fields. By analyzing the patents of major companies, it examines the manufacturing technologies of each company. Furthermore, through a review of literature and presentations on manufacturing technologies and methods, the report evaluates the advantages and disadvantages of each approach and explores which manufacturing processes are most suitable.

 

 

 

Strong Points of This Report

 

 

1. All-Solid-State Battery Technology Trends and Market Outlook 

 

2. Overall Issues with Solid Electrolytes and Proposed Solutions 

 

3. Cell Configuration and Considerations for Applying Solid Electrolytes in Batteries 

 

4. Comparison of All-Solid-State Battery Cell Manufacturing Technologies and Processes 

 

5. Manufacturing Technology Trends of Key Companies such as TOYOTA, HONDA, and SDI

 

 

 

 


 

< Development of New Halide-Based Solid Electrolytes Using AI by PNNL-Microsoft >

 

 

 


 

< Current Status of Technology Development for Improving the Lifespan of Li Metal Anodes >      

 

 


 

 < HONDA's Solid-State Battery Manufacturing Process >

 

 

 

 

 

 

- Table of Contents -

 

 

 

     

  1. Overview of All-Solid-State Batteries (ASSBs)

 

     1.1 All-Solid-State Battery (ASSB)

 

        1.1.1 History and Future of EV Development-------------------------------------------------------6

 

          1.1.2 Technological Advancement and Evolution of Batteries--------------------------------7

 

          1.1.3 Limitations of Lithium-Ion Secondary Batteries (LIBs) ------------------------------------9

 

          1.1.4 Characteristics and Necessity of ASSB Development ------------------------------------11

 

          1.1.5 Application Fields of ASSB ---------------------------------------------------------------------12

 

          1.1.6 ASSB Industry Chain --------------------------------------------------------------------------24

 

          1.1.7 Market Outlook of ASSB -------------------------------------------------------------------------25

 

          1.1.8 ASSB Patent Application Status ----------------------------------------------------------30

 

          1.1.9 ASSB Research Publication Status -------------------------------------------------------41

 

 

 

     1.2 ASSB Technology Trends

 

         1.2.1 Policies (projects) for Solid-State and Next-Generation Batteries----------------------48

 

          1.2.2  Mass Production Status of EV Applications by Car OEMs ------------------------------51

 

          1.2.3  Technology Trends and Responses by Major Battery OEMs --------------------------52

 

          1.2.4 Development and Response Status of Material/Component Companies------------56

 

          1.2.5 ASSB Production Status by Major OEMs-----------------------------------------------57

 

 

 

    2. Solid Electrolytes

 

     2.1 Solid Electrolytes for ASSBs

 

          2.1.1 Types and Compositions of Solid Electrolytes---------------------------------------------60

 

          2.1.2 Types and Electrochemical Properties of Solid Electrolytes ----------------------------62                          

 

          2.1.3 Li+ ion Conduction Mechanism in Various Solid Electrolytes -------------------------63

 

          2.1.4 Patent Application Trends in Solid Electrolytes -------------------------------------------64

 

     

 

     2.2 Oxide-Based Solid Electrolytes

 

          2.2.1 Properties and Characteristics of Oxide-Based Electrolytes----------------------------69

 

          2.2.2 Ion Conductivity and Application Areas of Oxide-Based Electrolytes-----------------70

 

          2.2.3 Types of Oxide-Based Solid Electrolytes----------------------------------------------71

 

          2.2.4 Advantages and Issues of Oxide-Based Solid Electrolytes------------------------------78

 

          2.2.5Solutions to Key Issues of Oxide-Based Electrolytes----------------------------------79

 

 

 

2.3 Sulfide-Based Solid Electrolytes

 

          2.3.1 Characteristics of Sulfide-Based Solid Electrolytes---------------------------------------80

 

          2.3.2 Ion Conductivity and Applications of Sulfide-Based Electrolytes----------------------81

 

          2.3.3 Advantages and Disadvantages of Sulfide-Based Solid Electrolytes----------------- 82

 

          2.3.4 Comparison of Synthesis Methods for Sulfide-Based Solid Electrolytes------------84

 

          2.3.5 Structure of Sulfide-Based Solid Electrolytes---------------------------------------------- 87

 

          2.3.6  Overview and Characteristics of Argyrodites---------------------------------------------88

 

          2.3.7 Overview and Characteristics of LGPS-----------------------------------------------------90

 

          2.3.8 Overview and Characteristics of LPS----------------------------------------------------------93

 

          2.3.9  Overview and Characteristics of Thio-LISICON--------------------------------------------95

 

          2.3.10 Issues Related to Sulfide-Based Solid Electrolytes--------------------------------96

 

          2.3.11 Cost Comparison of LPSCl Using Low-Purity Precursors------------------------------102

 

     2.4 Halide-Based Solid Electrolytes

 

          2.4.1 Properties of Halide-Based Solid Electrolytes-----------------------------------------104

 

          2.4.2 Characteristics of Halide Electrolytes: High Li-Ion Conductivity----------------------105

 

          2.4.3 Oxyhalide / Amorphous Structure----------------------------------------------------------106

 

          2.4.4 Halide-Based Solid Electrolytes: Enhancing Ion Conductivity -----------------------107

 

          2.4.5  Development of New Solid Electrolytes Using AI ---------------------------------------109

 

          2.4.6 Comparison with Other Solid Electrolyte Materials--------------------------------------112

 

          2.4.7 Oxyhalide-Based Solid Electrolytes --------------------------------------------------------113

 

          2.4.8 Li3InCl6 Oxygen Capture and Suppression, Safety Enhancement--------------------114

 

 

 

2.5 Polymer Solid Electrolytes

 

          2.5.1 Types and Characteristics of Polymer Matrices------------------------------------------116

 

          2.5.2 Types and Advantages/Disadvantages of Polymer Electrolytes----------------------117

 

          2.5.3 Properties of Polymer Electrolytes------------------------------------------------------118

 

          2.5.4 Issues with Polymer Electrolytes: Low Conductivity, Stability, etc. ------------------119

 

          2.5.5 Challenges and Solutions for Polymer Electrolytes --------------------------------------120

 

 

 

2.6 Solid Electrolyte Compatibility

 

          2.6.1 Key Considerations for ASSB Cells-----------------------------------------------------------121

 

          2.6.2 Cathode-Electrolyte Compatibility Issues----------------------------------------------122

 

          2.6.3 Anode-Electrolyte Compatibility Issues---------------------------------------------------123

 

          2.6.4 Correlation Between Elastic Modulus of Solid Electrolytes and Cell Performance-------------------------------------------124

 

          2.6.5 Impact of Stack Pressure and Current Density on Charge/Discharge----------------125   

 

 

 

 

 

3. ASSB Electrodes

 

     3.1 Cathode

 

          3.1.1 Cathode Active Materials for ASSBs-------------------------------------------------------127

 

          3.1.2 Cathode Active Material Trends---------------------------------------------------------------128

 

          3.1.3 Development Trends of Composite Cathodes for ASSBs-------------------------------129

 

          3.1.4 Cathode and Composite Cathode Processing ------------------------------------------130

 

          3.1.5 Challenges in Composite Cathode Development for ASSBs----------------------------133

 

          3.1.6 Research on Surface Coating Materials for Cathode Active Materials---------------134

 

          3.1.7 Analysis of LPSCl-Coated NCM523 Cathode-----------------------------------------------136

 

          3.1.8 Comparison of Electrode-Electrolyte Interfaces with and Without Coating-------137

 

          3.1.9 Various Cell Analyses After 50 Cycles---------------------------------------------------------138            

 

          3.1.10 Methods for Improving Cathode Performance -------------------------------------------139

 

          3.1.11 Recently Modified Cathode Active Materials and Advantages------------------------140

 

 

 

3.2 Anode

 

          3.2.1 Necessity of Anode Development for ASSBs----------------------------------------------141

 

          3.2.2 Technical Challenges in Anode Material Development for ASSBs------------------142

 

          3.2.3 Silicon Anode------------------------------------------------------------------------------------143

 

          3.2.4 Si-C Anode-----------------------------------------------------------------------------------144

 

          3.2.5 Research on Silicon-Based Anode Materials------------------------------------------145

 

          3.2.6 Processing of Lithium Metal and Silicon Anodes--------------------------------------146

 

          3.2.7 Lithium Metal Anode---------------------------------------------------------------------------148

 

          3.2.8 Lithium Metal Anode Manufacturing Process ---------------------------------------------149

 

          3.2.9 Necessity of Thin Lithium Foil Application-------------------------------------------------151

 

          3.2.10 Research on Lithium Dendrite Suppression and Interface Stabilization-------152

 

          3.2.11 Development of Technologies to Extend Lithium Metal Anode Lifespan----------154

 

          3.2.12 Overview of Anode-Free Batteries---------------------------------------------------------155

 

          3.2.13 Energy Density Comparison: Anode-Free vs. Other Batteries------------------------156    

 

          3.2.14 Lithium Melt Deposition Process-----------------------------------------------------161

 

          3.2.15 3D Grid Porous LiTiO₁₂ Thick Electrodes-----------------------------------------------162

 

          3.2.16 Recently Modified Anode Active Materials and Advantages---------------------163

 

 

 

 

 

4. ASSB Cells

 

     4.1 Manufacturing of ASSBs

 

          4.1.1 Solid Electrolyte Processing------------------------------------------------------------------165

 

          4.1.2 Cell Assembly------------------------------------------------------173

 

          4.1.3 Cell Finishing--------------------------------------------------------175

 

          4.1.4 Comparison of Manufacturing Processes: ASSB vs. LIB----------------------------------176

 

          4.1.5 ASSB Material Cost---------------------------------------------------------178

 

          4.1.6 ASSB Cell Manufacturing Cost-------------------------------------------------------179

 

          4.1.7 Promising ASSB Cell Concepts-------------------------------------------------------180

 

          4.1.8 Fabrication of All-Solid-State Battery (Semi-Solid-State Battery) Cells----------181

 

 

 

4.2 Oxide-Based ASSB

 

          4.2.1 Most Promising Cell Configurations ---------------------------------------------------------182

 

          4.2.2 Considerations in Battery Structure----------------------------------------------------------183

 

          4.2.3 Considerations in Battery Production------------------------------------------------------184

 

          4.2.4 Key Performance Indicators-------------------------------------------------------------------185

 

          4.2.5 Changes in Cell Concepts-------------------------------------------------------------------186

 

 

 

4.3 Sulfide-Based ASSB

 

          4.3.1 Cell Configuration--------------------------------------------------------------------------------187

 

          4.3.2 Considerations in Battery Structure-------------------------------------------------------188

 

          4.3.3 Considerations in Battery Production------------------------------------------------------189

 

          4.3.4 Key Performance Indicators--------------------------------------------------------------------190

 

          4.3.5 Structure with Silicon Anode---------------------------------------------------------------191

 

          4.3.6 Structural Considerations for Si/C Composite Anode Application-------------------192

 

          4.3.7 Production Considerations for Si/C Composite Anode Cells----------------------193

 

          4.3.8 Key Performance Indicators for Si/C Composite Anode Application-----------------194

 

 

 

4.4 Polymer-Based ASSB

 

          4.4.1 Configuration of Polymer-Based ASSB-----------------------------------------------------195

 

          4.4.2 Considerations in Battery Structure-------------------------------------------------------196

 

          4.4.3 Considerations in Battery Production-----------------------------------------------------197

 

          4.4.4 Key Performance Indicators of Polymer-Based ASSB -----------------------------------198

 

 

 

     4.5 Cell Energy Density

 

          4.5.1 Assumptions for Each Material------------------------------------------------------------198

 

          4.5.2 Gravimetric and Volumetric Energy Density-----------------------------------------------200

 

          4.5.3 Expected Scenarios and Roadmap--------------------------------------------------------201

 

 

 

 

 

5. Manufacturing Technology of ASSBs

 

     5.1 Lab-Scale Cell Fabrication

 

          5.1.1 Powder Pressing Cell Fabrication-----------------------------------------------------------205

 

          5.1.2 Three-Electrode Cell Fabrication----------------------------------------------------------207

 

          5.1.3 Coin Cell Fabrication--------------------------------------------------------------------------208

 

          5.1.4 ASSB by Japan NEDO -----------------------------------------------------------------------209

 

          5.1.5 Pouch Cell Fabrication----------------------------------------------------------------------210

 

 

 

     5.2 Cell Manufacturing Technology

 

          5.2.1 Advantages and Disadvantages by Type of ASSB-----------------------------------------214

 

          5.2.2 Manufacturing Methods by Type of Solid Electrolyte-----------------------------------215

 

          5.2.3 Characteristics and Pros & Cons of the Latest Manufacturing Technologies-------216

 

          5.2.4 Comparison of CIP, WIP, and HIP Processes-----------------------------------------------217

 

          5.2.5 Densification of Electrode/Electrolyte Layers -------------------------------------------219

 

          5.2.6 Stacking Manufacturing Technology-------------------------------------------------------220

 

          5.2.7 Slurry/Solution Casting Manufacturing Technology----------------------------------221

 

          5.2.8 Extrusion Manufacturing Technology-------------------------------------------------------222

 

          5.2.9 Tape Casting Manufacturing Technology------------------------------------------------223

 

          5.2.10 Electrolyte Infusion Manufacturing Technology--------------------------------------224

 

 

 

     5.3 Manufacturing Technology for Oxide-Based Cells

 

          5.3.1 Sintering ------------------------------------------------------------------------------225

 

          5.3.2 Hot Pressing -------------------------------------------------------------226

 

          5.3.3 Spark Plasma Sintering(SPS)----------------------------------------------------227

 

          5.3.4 Cold Sintering Process (CSP)-------------------------------------------------------------------228

 

          5.3.5 Microwave Sintering-------------------------------------------------------------------------230

 

          5.3.6 Ultra-Fast High-Temperature Sintering------------------------------------------------------231

 

          5.3.7 Flash Sintering--------------------------------------------------------232

 

          5.3.8 Photon Sintering and Laser Sintering--------------------------------------------------------233

 

 

 

     5.4 Dry Processing Technology

 

          5.4.1 Issues in Wet-Based Electrode Manufacturing Processes-----------------------------234

 

          5.4.2 Advantages of Introducing Dry Processing--------------------------------------------235

 

          5.4.3 Key Dry Coating Technologies ----------------------------------------------------------------236

 

          5.4.4 Free-Standing Electrode Manufacturing Technology------------------------------------237

 

          5.4.5 Direct Calendaring Manufacturing Technology--------------------------------------------238

 

          5.4.6 Composite Electrode and Separator Fabrication----------------------------------239

 

          5.4.7 Trends in Dry Process Adoption by Major Companies-----------------------------------240

 

          5.4.8 Comprehensive Comparison of Dry vs. Wet Process Technologies-------------------241

 

          5.4.9 Patent Trends in Dry Electrode Processing------------------------------------------------242

 

 

 

     5.5 Cell Manufacturing Process

 

          5.5.1 Comparison of Manufacturing Processes: All-Solid-State vs. Lithium Metal vs. Li-Sulfur-------------------------------------------243

 

          5.5.2 Comparison of Manufacturing Processes: Sulfide-Based vs. Oxide-Based vs. Polymer-Based--------------------------------245

 

          5.5.3 Cathode Manufacturing-------------------------------------------------------------------------246

 

          5.5.4 Anode Manufacturing---------------------------------------------------------------------------252

 

          5.5.5 Anode Foil Manufacturing Process---------------------------------------------------------256

 

          5.5.6 Solid Electrolyte Separator Manufacturing Process Flow-------------------------------262

 

          5.5.7 Cell Assembly----------------------------------------------------------------------------266

 

          5.5.8 Advantage/Disadvantage Comparison by Manufacturing Process-------------------271

 

 

 

     5.6 Cell Manufacturing Methods

 

          5.6.1 Limitations of Flat Press and Roll Press ----------------------------------------------------274

 

          5.6.2 Difference Between HIP and Hot Pressing -------------------------------------------------275

 

          5.6.3 Advanced Assembly Methods for Lithium-Based Batteries-----------------------------276

 

          5.6.4 Comparison Between Conventional Sintering Methods and HIP-Treated Solid Electrolytes---------------------------------------278

 

          5.6.5 Wet Manufacturing Methods for Cathode Materials--------------------------------280

 

          5.6.6. Surface Coating of Cathode Active Materials----------------------------------------------283

 

          5.6.7 Interface Enhancement Between Cathode and Solid Electrolyte--------------------286

 

          5.6.8 Protective Coating Layer for Cathode-----------------------------------------------------287

 

          5.6.9 Composite/Coating Treatment of Active Materials---------------------------------------288

 

          5.6.10 Methods for Improving Cell Characteristics---------------------------------------------289

 

 

 

 

 

6. Trends in Manufacturing Technologies of Major Companies

 

     6.1 TOYOTA

 

          6.1.1 Identification of Factors Leading to Degradation in ASSB Cells-----------------------296

 

          6.1.2 Issues of Performance Degradation in Long-Term Cycles------------------------------297

 

          6.1.3 TOYOTA’s Steps for Applying ASSB-----------------------------------------------------300

 

          6.1.4 ASSB Manufacturing: Application of Pressing--------------------------------------------301

 

          6.1.5 ASSB Manufacturing: Application of Sublimation Fillers-------------------------------304

 

          6.1.6 Application of Hot Isostatic Pressing (HIP)------------------------------------------------ -305

 

          6.1.7 Application of Resin Packaging---------------------------------------------------------------307

 

          6.1.8 ASSB Cell Manufacturing and Assembly Processes---------------------------------------312

 

          6.1.9 Solutions and Measures for Enhancing Battery Characteristics----------------------313

 

          6.1.10 Comparison of Materials with Other Batteries------------------------------------------314

 

          6.1.11 Material Change from LIB to ASSB-----------------------------------------------------------315

 

          6.1.12 Patent Analysis of TOYOTA’s ASSB Manufacturing Process --------------------------316

 

 

 

     6.2 HONDA

 

          6.2.1 ASSB Manufacturing Methods-----------------------------------------------------------------318

 

          6.2.2 Directions for ASSB Manufacturing----------------------------------------------------------319

 

          6.2.3 ASSB Cell Prototype Manufacturing Process---------------------------------------------320

 

          6.2.4 ASSB Manufacturing Process: Mixing, Electrode Coating-------------------------------321

 

          6.2.5 Electrode Roll Pressing/Slitting ---------------------------------------------------------------322

 

          6.2.6 Bonding Roll Pressing, Stacking----------------------------------------------------323

 

          6.2.7 Tab Welding, Assembly, Sealing, Aging, Inspection--------------------------------------324

 

          6.2.8 Comprehensive EV Valuation Structure---------------------------------------------------325

 

          6.2.9 Battery Development Roadmap-------------------------------------------------------------326

 

          6.2.10 Responses to Next-Generation Batteries------------------------------------------------327

 

          6.2.11 Advantages of HONDA's ASSB----------------------------------------------------------328

 

          6.2.12 Differences in HONDA's ASSB Process-----------------------------------------------------329

 

          6.2.13 Detailed Measures for Production Technology Development----------------------331

 

          6.2.14 ASSB P/P Line Concept-----------------------------------------------------------------333

 

          6.2.15 HONDA's ASSB Investment Plans-----------------------------------------------------------335

 

          6.2.16 Overview of HONDA Tochigi Sakura Factory----------------------------------------------336

 

          6.2.17 Entire Process of HONDA’s ASSB------------------------------------------------------------338

 

 

 

     6.3 Nissan

 

          6.3.1 ASSB Manufacturing Directions-------------------------------------------------------------340

 

          6.3.2 Identification of Factors Leading to ASSB Performance Degradation---------------342

 

          6.3.3 Prototype Lab Manufacturing Process ----------------------------------------------------344

 

          6.3.4 ASSB Manufacturing Process-------------------------------------------------------------------347

 

          6.3.5 Nissan Solid Battery P/P Line--------------------------------------------------------349

 

          6.3.6 Nissan’s ASSB Development Schedule-----------------------------------------------------350

 

          6.3.7 Nissan EV 36Zero project-------------------------------------------------------------351

 

          6.3.8 NCM-based Cathode and Lithium Metal Anode Batteries----------------------------352

 

          6.3.9 Introduction of Sulfide-based Solid Electrolyte------------------------------------------353

 

          6.3.10 Measures to Ensure Uniform Lithium Deposition---------------------------------------354

 

          6.3.11 Establishment of ASSB Production Line--------------------------------------------------355     

 

6.4 Samsung SDI

 

          6.4.1 ASSB Cell Configuration and Mass Production Preparation----------------------------356

 

          6.4.2 Reduction of Vehicle Weight and Increase in Trunk Space------------------------------357

 

          6.4.3 Safety and Pack Weight Reduction-----------------------------------------------------------358

 

 

 

6.5 LG ES

 

          6.5.1 ASSB Development Roadmap and Application Areas------------------------------------359

 

          6.5.2 Development of Polymer-Based ASSB-------------------------------------------------------360

 

          6.5.3 Development of Silicon-Based Anodes for Sulfide-Based ASSB ----------------------361

 

          6.5.4 Development of Anode-free Electrical Technology for ASSB---------------------------362

 

 

 

6.6 Hyundai Motor

 

          6.6.1 ASSB P/P Line Operations and Development Status-------------------------------------363     

 

          6.6.2 Battery Manufacturing Using Roll Presses of Different Diameters------------------364

 

          6.6.3 Dry Electrode Manufacturing Using Binder Fiberization--------------------------------365

 

          6.6.4 Manufacturing of Anode-free ASSB----------------------------------------------------------366

 

          6.6.5 High-Density ASSB Manufacturing Using WIP---------------------------------------------366

 

 

 

6.7 CATL

 

          6.7.1 ASSB Development Status----------------------------------------------------------------------368     

 

          6.7.2 CATL vs. TOYOTA Strategy Comparison------------------------------------------------------369

 

          6.7.3 High-Performance Cathode Interface Design----------------------------------------------370

 

          6.7.4 CATL Electrolyte Strategy-----------------------------------------------------------------------371

 

 

 

6.8 Solid Power

 

          6.8.1 ASSB Structure and Development Line-up-------------------------------------------------372

 

          6.8.2 ASSB Manufacturing Process------------------------------------------------------------------373

 

          6.8.3 Si Anode, Li Anode EV ASSB Roadmap ------------------------------------------------374

 

          6.8.4 ASSB Production Roadmap -------------------------------------------------------------------375

 

 

 

     6.9 Kanadevia(Hitachi Zosen Corporation)--------------------------------------------------------376   

 

     6.10 Mitsui Mining & Smelting ----------------------------------------------------------------------------378

 

     6.11 Factorial Energy-----------------------------------------------------------------------------------------379

 

     6.12 Blue Solution

 

          6.12.1 Blue Solutions' LMP® ASSB Structure -------------------------------------------------380

 

          6.12.2 Blue Solutions' LMP® ASSB (Gen 4) Characteristics ------------------------------------381

 

          6.12.3 Blue Solutions' LMP® ASSB (Gen 4) Target Characteristics ----------------------------382

 

          6.12.4 Extrusion Manufacturing Process and Ah-Level Production Process for Polymer-Based ASSBs -----------------------383

 

          6.12.5 Blue Solutions' LMP® ASSB Manufacturing Process -----------------------------------384

 

          6.12.6 Blue Solutions' ASSB Roadmap --------------------------------------------------385

 

 

 

     6.13 QuantumScape

 

          6.13.1 QS ASSB Manufacturing Process and Cell Characteristics-----------------------------386

 

          6.13.2 QS ASSB Cell Specifications and Performance-------------------------------------------387

 

          6.13.3 QS ASSB Performance and Roadmap-----------------------------------------------------388

 

          6.13.4 Solid Electrolyte Separator Production Technology: Cobra--------------------------389

 

          6.13.5 Applied Product QSE-5 B ASSB-------------------------------------------------------------390

 

          6.13.6 Introduction of Advanced Production Equipment: Raptor----------------------------391

 

 

 

     6.14 SES AI

 

          6.14.1 SES Complete Cell Structure------------------------------------------------------------------392

 

          6.14.2 SES Cell Performance and 103Ah Cell Safety Test---------------------------------------393

 

          6.14.3 SES Cell P/P Line Key Processes-------------------------------------------------------------394

 

 

 

6.15 ProLogium

 

          6.15.1 ProLogium ASSB Cell Structure-------------------------------------------------------------395

 

          6.15.2 Ceramic Separator: CSE (Composite Solid Electrolyte – Oxide + Solid Polymer Electrolyte)---------------396

 

          6.15.3 ProLogium ASSB Line Configuration and Trends-------------------------------------398

 

          6.15.4 ProLogium ASSB Key Manufacturing Processes-----------------------------------------399

 

 

 

     6.16 Johnson Energy Storage

 

          6.16.1 Cell Information and Related Characteristics--------------------------------------------400

 

          6.16.2 Slurry Coating Process--------------------------------------------------------------------401

 

          6.16.3 Co-Extrusion Process----------------------------------------------------------------------403

 

 

 

     6.17 TaiyoYuden(太陽誘電)

 

          6.17.1 MLCC Type ASSB Structure---------------------------------------------------------405

 

          6.17.2 MLCC Type ASSB Manufacturing Process------------------------------------------------406

 

 

 

     6.18 TDK--------------------------------------------------------------------------------------------------------410

 

     6.19 TDL--------------------------------------------------------------------------------------------------------411

 

     6.20 Nippon Electric Glass (NEG)-------------------- -----------------------------------------------------413

 

     6.21 Sevenking Energy-------------------------------------------------------------------------------------414

 

 

 

     6.22 Solivis

 

          6.22.1 Company Overview, Performance, and Notable Information--------------------415

 

          6.22.2 Solivis Solid Electrolyte Development----------------------------------------------------416

 

          6.22.3 Sulfide-Based Solid Electrolyte Hengsheng 1st Factory Groundbreaking---------417                      

 

          6.22.4 Solivis Solid Electrolyte Product Line: SICON Series 3 Types------------------------418

 

 

 

6.23 NANBOCAMP

 

          6.23.1 NANOCAMP History---------------------------------------------------------------------------419

 

          6.23.2 Argyrodite Oxysulfide Solid Electrolyte Development-----------------------------420

 

          6.23.3 Manufacturing Process Establishment and Characterization-------------------------421                      

 

          6.23.4 Cell Evaluation System (Evaluation System from Raw Materials to Cells)-------- -422

 

          6.23.5 Plant Completion, Facility Expansion and Construction-------------------------------423                      

 

          6.23.6 Production Capacity, Revenue, and Customer Order Supply-------------------------424

 

 

 

6.24 ENFLOW

 

          6.24.1 Enflow History and Plant Status-------------------------------------------------------------425

 

          6.24.2 Spray Pyrolysis Process and Spherical Fine Powder Production Method-------426

 

          6.24.3 Scale-Up Plan and Commercialization----------------------------------------------427                      

 

 

 

6.25 Umicore

 

          6.25.1 Umicores Roadmap for Cathode materials ----------------------------------------------428

 

          6.25.2 Umicore’s All-Solid-State Cathode Active Material IP Portfolio-----------------------429

 

          6.25.3 Umicore’s Battery Development Progress---------------------------------------------430                      

 

          6.25.4 Breakthrough in ASSBs through Catholyte------------------------------------------------431

 

 

 

     6.26 Panasonic----------------------------------------------------------------------------------------432

 

     6.27 Lotte Energy Materials-----------------------------------------------------------------------------433

     6.28 Idemitsu-----------------------------------------------------------------------------------------434