본문바로가기

What we do

We aim to provide our clients with intelligence,
future-directed information and analysis.

Report purchase request

  • Sales team
  • 070-4006-0265 / 070-4006-1507 / 070-4006-0355

  • sales@sneresearch.com

Purchase inquiry
Battery, Battery Materials

<2025> Technology Trends and Market Outlook of LIB Separators (~2035)

 

 

Lithium-ion batteries play a crucial role in various sectors, including electric vehicles (EV), energy storage systems (ESS), and consumer electronics (CE). Consequently, continuous improvements in energy density, lifespan, and safety are essential. In meeting these demands, separators are gaining attention as a critical component that determines battery performance and stability. Separators allow ion transport through the electrolyte while preventing physical contact between the cathode and anode, thereby avoiding internal short circuits. Although classified as an inactive component, the thermal, mechanical, and electrochemical properties of separators significantly influence the cell's stability, lifespan, and safety.

 

Today, separator technology is advancing through the development of various materials and processes. Conventional polyolefin-based separators (PE, PP) are widely commercialized due to their excellent mechanical stability and thermal resistance. However, they exhibit performance limitations under high-power and high-temperature conditions. To address these challenges, ceramic coating technologies and nonwoven-based separators have been introduced, significantly improving thermal stability and durability. Additionally, the emergence of next-generation batteries, such as solid-state batteries, necessitates the design of new composite separators that surpass the limitations of conventional ones. In particular, separators utilizing PVDF (polyvinylidene fluoride) and other advanced polymer materials are being actively researched for their superior thermal stability and electrochemical performance, aligning with the requirements of next-generation batteries.

 

With the technological advancements in separators, the LIB market is experiencing rapid growth. According to SNE Research, the global separator market is projected to grow from approximately $2.2 billion in 2025 to $12.8 billion by 2030, achieving a CAGR of over 12%. This growth is primarily driven by the expansion of electric vehicle adoption and the increasing demand for energy storage systems (ESS). In particular, the demand for high-performance batteries is acting as a catalyst for innovations in separator technology. Simultaneously, major manufacturers are accelerating the development of separators tailored to next-generation battery technologies, such as solid-state batteries.

 

The 2025 report provides a comprehensive analysis of LIB separator technologies and the market. It delves into the development trends and performance enhancement strategies for key materials such as PE, PP, and PVDF. Additionally, it offers an in-depth examination of the evolution of ceramic coating and composite separator technologies, which have recently garnered significant attention. The report includes historical demand data from 2021 to 2024 based on global market data and presents market forecasts from 2025 to 2030. It also highlights the latest product trends and technological strategies of major separator manufacturers, offering valuable insights into the present and future of the LIB industry.

 

Separators have emerged as a critical component that determines the performance and safety of lithium-ion batteries (LIBs), going beyond being a mere part. This report provides technical insights and market forecasts for researchers and industry professionals, serving as an essential guide for comprehensively understanding the present and future of LIB separators. As the LIB industry continues to evolve, the significance of separator technology will grow even further in achieving environmental sustainability and the goals of a circular economy.

 

 

 

Strong Points of This Report :

 

1. Comprehensive overview and technical details of separators 

 

2. Latest technological development trends in separators 

 

3. Market forecast data for separators 

 

4. Detailed information on manufacturing and product status of major separator companies

 

 


 

 

 

Contents

 

 

Report Overview

 

1. Current Status and Development Trends of Separator Technology

 

1.1 Introduction 14

 

1.1.1 Current Status of Separator Development

 

1.1.2 Role of Separator

 

1.2 Types of Separator  18

 

1.2.1 Microporous Polyolefin Separator

 

1.2.2 Nonwoven Fabric 

 

1.2.3 Ceramic Composite Separator     

 

1.3 Separator Characteristics    28

 

1.3.1 Chemical Stability

 

1.3.2 Thickness

 

1.3.3 Porosity  

 

1.3.4 Pore Size 

 

1.3.5 Torsional Rigidity 

 

1.3.6 Air Permeability  

 

1.3.7 Lithium-ion Permeability 

 

1.3.8 Mechanical Strength       

 

1.3.9 Wettability         

 

1.3.10 Electrolyte Absorption   

 

1.3.11 Thermal Shrinkage        

 

1.3.12 Shutdown Characteristics

 

1.3.13 Cost      

 

1.3.14 Oxidation Stability        

 

1.3.15 Melt-down       

 

1.4 Major Issues of Separator   41

 

1.4.1 Separator Properties       

 

1.4.2 Swelling and Softening of Separator       

 

1.4.3 Separator Damage by Lithium Dendrite   

 

1.4.4 Thermal Damage 

 

1.4.5 Mechanical Damage 

 

      

 

2. Polyolefin-Based Separator

 

2.1 Polyolefin-Based Separator Manufacturing Process  44

 

2.1.1 Dry Method       

 

2.1.2 Wet Method       

 

2.2 Relationship Between Polyolefin-Based Separator and Battery         52

 

2.2.1 Battery Performance       

 

2.2.2 Battery Safety     

 

2.3 Latest Development Trends of Polyolefin-Based Separator   58

 

2.3.1 Surface Treatment

 

2.3.2 Polymer-Functionalized Polyolefin Separator       

 

2.3.3 Ceramic-Coated/Deposited Polyolefin Separator  

 

2.3.4 Ceramic/Polymer-Functionalized Hybrid Polyolefin Separator       

 

 

 

3. Nonwoven Fabric Separator

 

3.1 Nonwoven Fabric Separator Manufacturing Process 64

 

3.1.1 Dry-laid Method  

 

3.1.2 Wet-laid Method 

 

3.1.3 Spun-bond        

 

3.1.4 Melt-blown Process        

 

3.1.5 Web Bonding     

 

3.2 Properties of Nonwoven Fabric Separator    73

 

3.3 Latest Development Trends of Nonwoven Fabric Separator  76

 

3.3.1 Cellulose-Based Separator

 

3.3.2 Fluoropolymer-Containing Separator       

 

3.3.3 PVA Separator    

 

3.3.4 PAN Separator    

 

3.3.5 PET Separator     

 

3.3.6 PI Separator       

 

3.3.7 PEI Separator      

 

3.3.8 Nylon Separator  

 

3.3.9 PEEK Separator   

 

3.3.10 PMMA Separator

 

3.3.11 PBI Separator    

 

3.3.12 Poly(Para-Phenylene Benzobisoxazole) Separator

 

3.3.13 Poly(m-Phenylene Isophthalamide) (PMIA) Separator     

 

3.3.14 Polyphenylene Sulfide Separator           

 

3.3.15 Polyphenylene Oxide Separator 

 

3.3.16 Polysulfone Separator   

 

          

 

4. Latest Technological Trends in Heat-Resistant Coated Separators

 

4.1 Multilayer Structure Heat-Resistant Separator         93

 

4.2 Nonwoven Fabric Separator 94

 

4.3 Inorganic-Introduced High-Safety Separator 100

 

4.3.1 Non-Aqueous Inorganic Coated Separator

 

4.3.2 Aqueous Inorganic Coated Separator      

 

        4.3.3 Binder-Free Separator    

 

        4.3.4 Multifunctional Inorganic Coated Separator        

 

4.4 Heat-Resistant Polymer Coated Separator   114

 

4.4.1 Coated Separator with Heat-Resistant Polymer and Inorganic Materials    

 

4.4.1.1 Inorganic Coated Separator Using Heat-Resistant Polymer as a Binder   

 

4.4.1.2 Inorganic/Heat-Resistant Polymer Coated Separator      

 

4.4.2 Flame-Retardant Separator         

 

4.4.2.1 Separator Made with Flame-Retardant Materials

 

4.4.2.2 Separator with Additional Flame-Retardant Materials    

 

4.5 Microporous Polymer Separator      125

 

4.6 Thermal Shutdown Separator         130

 

4.7 Voltage-Sensitive Separator 133

 

 

 

5. Latest Technological Trends in Other Separators

 

5.1 Ceramic Composite Separator        136

 

5.2 Nature-Inspired LIB Separator         137

 

5.3 Redox-Active LIB Separator 138

 

5.4 Shutdown-Functionalized LIB Separator       139

 

 

 

6. Latest Technological Trends and Developments in the Domestic LIB Separator Industry

 

6.1 Case Study 1: SKIET Wet Separator Sheet Technology         141

 

6.1.1 Overview of Separator Sheet Line Process          

 

6.1.2 Basic Required Properties of Separator Sheet      

 

6.1.3 Overview of Separator Coating Process    

 

6.1.4 Basic Required Properties of Coated Separator    

 

6.2 Case Study 2: W-Scope Wet Separator Technology  147

 

6.2.1 Current Status of Wet Separator Development    

 

6.2.2 Development Direction of Wet Separator 

 

6.3 Case Study 3: EnerEver Separator Coating Technology        151

 

6.3.1 Overview of Separator Coating Technology Development

 

6.3.2 Prospects for Separator Coating Technology Development

 

6.4 Case Study 4: Upexchem Dry Separator Technology 159

 

6.4.1 Overview of Separator Technology Development 

 

6.5 Summary of Latest Technological Trends    160

 

6.5.1 Enhanced Heat Resistance and Safety      

 

6.5.2 Ultra-Thin Separators      

 

6.5.3 Use of Advanced Materials         

 

6.5.4 Innovations in Manufacturing Process     

 

6.5.5 Additional Factors in Technology Development

 

   

 

7. Separator Market Trends and Outlook

 

7.1 Current Status of Separator Demand          164

 

7.1.1 Regional Separator Demand Status         

 

7.1.2 Material-Based Separator Demand Status 

 

7.1.3 Application-Based Separator Demand Status       

 

7.2 Market Share and Shipment Trends by Separator Suppliers  170

 

7.2.1 Market Share Trends by Separator Suppliers       

 

7.2.2 Shipment Trends by Separator Suppliers  

 

7.3 Trends in Separator Purchasing Volume by Major LIB Manufacturers 173

 

7.3.1 Samsung SDI (2020~2024E)        

 

7.3.2 LGES (2020~2024E)        

 

7.3.3 SK on (2020~2024E)       

 

7.3.4 Panasonic (2020~2024E) 

 

7.3.5 CATL (2020~2024E)        

 

7.3.6 BYD (2020~2024E)

 

7.3.7 CALB (2020~2024E)        

 

7.3.8 EVE (2020~2024E)

 

7.3.9 Gotion (2020~2024E)      

 

7.4 Separator Production Capacity Outlook      234

 

7.4.1 Production Capacity Outlook by Type      

 

7.4.2 Production Capacity Outlook by Company

 

7.5 Separator Demand Outlook 236

 

7.5.1 Separator Demand Outlook by Region    

 

7.5.2 Separator Demand Outlook by Application         

 

7.5.3 Separator Demand Outlook by Type       

 

7.6 Separator Supply and Demand Outlook      242

 

7.6.1 Global Separator Supply and Demand Outlook    

 

7.6.2 Separator Supply and Demand Outlook Excluding China’s Capacity         

 

7.7 Separator Price Trends       244

 

7.7.1 Separator Price Structure 

 

7.7.2 Separator Price Trends    

 

7.8 Separator Market Size Outlook       247

 

 

 

8. Status of Separator Manufacturers

 

8.1 Korean Separator Manufacturers     249

 

8.1.1 SKIET (SK IE Technology) 

 

8.1.2 W-Scope (WCP, W-Scope Corporation)   

 

8.1.3 EnerEver  

 

8.2 Japanese Separator Manufacturers  266

 

8.2.1 Asahi Kasei         

 

8.2.2 Toray      

 

8.2.3 Ube Maxell        

 

8.2.4 Sumitomo Chemical (住友化株式)  

 

8.2.5 Teijin      

 

8.3 Chinese Separator Manufacturers    285

 

8.3.1 SEMCORP (恩捷股)      

 

8.3.2 Senior (星源材)

 

8.3.3 Sinoma (中材科技)

 

8.3.4 Gellec (金力股

 

8.3.5 ZIMT (新材)  

 

8.3.6 Huiqiang (惠强新能源)    

 

8.3.7 Putailai (璞泰)  

 

8.3.8 Horizon (厚生)         

 

8.3.9 Bosser (博盛新材)

 

8.3.10 Lanketu (科途)

 

8.3.11 CZMZ (州明珠)

 

8.3.12 Jinhui (高科)

 

8.3.13 Green (中科科技)

 

8.4 Other Separator Manufacturers       344

 

8.4.1 Sepion Technology         

 

          

 

9. Status of Separator Raw Material Manufacturers

 

9.1 Korean Separator Raw Material Manufacturers

 

9.1.1 KC

 

9.1.2 Osang Jaiel

 

9.2 Chinese Separator Raw Material Manufacturers

 

9.2.1 Estone (壹石通)

 

9.2.2 CHALCO (铝郑州有色金属研究院)

 

9.2.3 Sinocera (东国瓷功能材料股有限公司)

 

9.2.4 Tianma (河南天新材料股有限公司)

 

9.2.5 Higiant (平恒嘉新材料科技有限公司)

 

9.3 Other Separator Raw Material Manufacturers

 

9.3.1 TOR Minerals

 

9.3.2 Nabaltec

 

 

 

10. References  

 

 

 

   ​